Risks of Ignition

There are four elements to examine in order to understand the risk of an ignition of sensitive flammable gas, vapor and dust atmospheres. performance


Risk of Ignition Triangle - Sensitivity of Flammable Atmosphere - Charge Generation - Incedivity Discharge - Charge Accumulation

The first element is the sensitivity of the surrounding flammable atmosphere, i.e., how easily is the gas, vapor or dust atmosphere ignited. The sensitivity is measured by the minimum ignition energy (MIE) of the flammable atmosphere. The ignition energy varies depending of the mixture of the flammable gas, vapor, or dust and air or oxygen so the minimum is used to ensure worst case. Typical MIEs for flammable vapor atmospheres found in industry range from 0.14mJ to 0.25mJ.

  • Minimum Ignition Energy
  • Hydrogen - 0.01mJ
  • Ethylene - 0.07mJ
  • Methanol - 0.14mJ
  • Ethane - 0.24mJ
  • Propane - 0.25mJ

The second element is charge generation. Charge is generated in an industrial setting by triboelectrification or tribocharging. Triboelectrification occurs when materials separate from each other. During the filling or emptying of FIBCs this can occur in a number of ways.

  • Particles or pellets of product contacting and separating from each other
  • Product contacting and separating from the surfaces of conveying equipment
  • Product contacting and separating from the FIBC surfaces

The third element is charge accumulation. In the presence of triboelectrification, charge will accumulate on any isolated surface whether these surfaces are of conductive, dissipative or non-conductive materials. Conductive materials have volume resistivity of less than 104 Ω. Dissipative materials have volume resistivity of greater than 104 Ω and less than 109 Ω. Non-conductive materials have volume resistivity greater than 109 Ω. Most plastic materials including the FIBC polypropylene woven fabric are non-conductive. In evaluating performance the rate of charge flowing into an FIBC or the charging current is used to characterize the how much charge is accumulating during a period of time. Leading experts from around the world have established 3 µ A is an appropriate safe maximum value for charging rate for industrial applications involving FIBCs.

The fourth element is the incendivity of the discharge. The incendivity depends on the mechanism for the discharge of accumulated charge. There are five mechanisms or types of discharges.

Spark Spark discharges occur between two conductors and has energy of up to several joules. These discharges can and do occur in Type A FIBC and TYPE B FIBC and in Type C FIBCs that are not properly grounded. The more conductive the network within the groundable Type C FIBC is the more energetic the spark discharge may be.
Propagating Brush Propagating brush discharges occur between an insulator and conductor. These discharges can have energies of several joules and are avoided in FIBCs by using fabric with breakdown voltage of less than 4kV.
Brush Brush discharges occur between an insulator and a conductor but is much less energetic at around 4mJ but still sufficient to ignite sensitive atmospheres. These discharges are a major concern in groundable Type C FIBCs and led to the stringent spacing requirements for the conductive networks.
Cone Cone discharges may occur during the filling process. The accumulation of product causes a compaction of the product below which can release a cone discharge.
Corona Corona discharges occur when the air surrounding the charge breaks down and is ionized. These discharges are very low energy and are believed to be capable of igniting only hydrogen.
TEXENE LLC, Textile Technologies of the 21st Century
Textile Technologies of the 21st Century


TEXENE LLC is a leading manufacturer of technical textiles focused on delivering precision engineered, safety performance products worldwide.

ARTICLES ON ELECTROSTATICS

STATIC HAZARDS USING FLEXIBLE INTERMEDIATE BULK CONTAINERS FOR POWDER HANDLING
In the early 1990's, Dr Laurence G. Britton, a highly respected process safety engineer with Union Carbide Corp. (later Dow Corp.), conducted a study of fire and explosion incidents that occurred when FIBC were ...

DANGERS OF COMBUSTIBLE DUST EXPLOSIONS, OSHA REGULATIONS, AND ANTISTATIC FIBC
Following three fatal dust explosions in 2003 alone, the US Chemical Safety & Hazard Investigation Board (CSB) launched a wide ranging study of industrial dust explosions.  This first issue of our Electrostatic Safety ...

CHOOSING SAFE STATIC CONTROL FIBC
The second issue of our Electrostatic Safety Review outlines the development of conductive Type C FIBC and the later development of CROHMIQ, the world's first truly effective Type D FIBC fabric, which provides ...

TESTING & CERTIFYING THE SAFETY OF STATIC PROTECTIVE FIBC
The third issue in our series of Electrostatic Safety Reviews describes the rigorous testing that is demanded by national and international standards such (IEC, CENELEC, NFPA, etc.) in order to prove the safety of ...

NEW DEVELOPMENTS IN SAFETY STANDARDS FOR STATIC PROTECTIVE FIBC
Companies that handle combustible powders in bulk bags, or empty products from bulk bags in environments where flammable solvents may be present rely on safe antistatic FIBC to prevent fires and explosions. Proving safety ...

CHEMICAL ACCIDENTS IN THE NEWS

Jul 10th, 2017
Herbert Explosion
...